Recombinant immunofluorescence assay for the detection of anti-glutamate receptor (type NMDA) antibodies in the differential diagnosis of autoimmune encephalopathies

K.P. Wandinger¹, J. Dalmau², K. Borowski¹, C. Probst¹, K. Fechner¹, and W. Stoecker¹

¹Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Luebeck, Germany
²Department of Neurology, University of Pennsylvania, Philadelphia, USA

Introduction

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe and considerably underdiagnosed disorder that frequently affects young women with teratomas of the ovary, but is also observed in females without tumors as well as in men and children. Patients usually present with symptoms like memory loss, disorientation, confusion, paranoid thoughts, visual or auditory hallucinations, dyskinesias, decrease of consciousness, lethargy, seizures and autonomic instability. Early diagnosis is crucial since patients often improve with immunotherapy and removal of the tumor. Final diagnosis is based on the determination of anti-glutamate receptor (type NMDA) antibodies in serum or cerebrospinal fluid (CSF). Here we report a recombinant assay for standardized detection of anti-glutamate receptor (type NMDA) antibodies applicable in each laboratory familiar with indirect immunofluorescence.

Methods

cDNAs for the glutamate receptor (type NMDA; subunits NR1/NR1 and NR1/NR2, respectively) were inserted into eukaryotic expression vectors and transfected into HEK293 cells. Recombinant cells were grown on slides of cover glass, followed by fixation with acetone. Substrates were fragmented to BIOCHIPs and used in a mosaic which contained additionally frozen sections of rat hippocampus and cerebellum for the determination of autoantibodies in the indirect immunofluorescence test.

47 serum and 23 CSF samples from patients with anti-NMDAR encephalitis and controls with other disorders, including, anti-VGKC and AMPA receptor encephalitis, were examined. In addition, sera of 100 healthy blood donors were analyzed.

Results

All samples from patients with anti-NMDAR encephalitis (29 serum, 10 CSF) were tested positive with the transfected cells, while all disease control samples (18 sera, 13 CSF) and healthy blood donors (100 sera) were negative. In addition, sera of 100 healthy blood donors were analyzed.

Indirect immunofluorescence using glutamate receptors (type NMDA) recombinantly expressed in human cells as antigenic substrate is highly competent in diagnosing NMDAR encephalitis. The combined use of transfected cells with hippocampal and cerebellar tissue substrates allows the detection of other autoantibodies implicated in the differential diagnosis of autoimmune encephalopathies, such as antibodies to VGKC and AMPA receptor encephalitis, or uncharacterized antigens of the neuropil of hippocampus.

Conclusion

Euroimmun AG · D-23560 Luebeck (Germany) · Seekamp 31 · Tel +49 451 58550 · Fax 585591 · E-mail euroimmun@euroimmun.de

Scientific presentation at the 9th Dresden Symposium on Autoantibodies (Dresden, Germany, September 2009)