Anti-Toxoplasma gondii ELISA (IgG)

- ELISA for the sensitive and specific determination of IgG antibodies against *Toxoplasma gondii*
- Quantification in IU/ml with respect to the international standard of the WHO
- Simple and fast test performance – fully automatable

Technical data

Antigen
Detergent extract of purified *Toxoplasma gondii* organisms

Calibration
Quantitative, in international units per ml (IU/ml); based on the 3rd international standard preparation of the World Health Organization (WHO)

- Calibration serum 1: 200IU/ml
- Calibration serum 2: 10IU/ml
- Calibration serum 3: 1IU/ml

Recommended upper threshold for non-infected persons (cut-off): 10IU/ml

Sample dilution
Serum or plasma; 1:101 in sample buffer

Reagents
Ready for use, with the exception of the wash buffer (10x); colour-coded solutions, in most cases exchangeable with those in other EUROIMMUN ELISA kits

Test procedure
30min / 30min / 15min, room temperature, fully automatable

Measurement
450nm, reference wavelength between 620nm and 650nm

Test kit format
96 break-off wells; kit includes all necessary reagents

Order no.
El 2410-9601 G

Clinical significance

The sporozoan *Toxoplasma gondii* is the causative agent of the worldwide distributed zoonosis toxoplasmosis. The main host animal is the cat. Oocysts are produced in the cat intestine during the sexual development cycle. During the asexual cycle, the *Toxoplasma* parasites develop in the brain, muscles, liver, spleen and in other organs of a warm-blooded animal, where they become encapsulated. Humans are generally infected perorally by ingestion of oocysts with viable trophozoites, which are contained in the faeces of infected cats or in meat products (raw flesh) from infected animals. Toxoplasmosis proceeds inapparently in > 90% of cases. Cysts containing trophozoites affected or infected cats or in meat products (raw flesh) from infected animals. Toxoplasmosis proceeds inapparently in > 90% of cases. Cysts containing trophozoites form in the tissues and can persist for years. The symptoms of the manifest disease include fever, lymphadenopathy, encephalitis, chorioretinitis, myositis, myocarditis, pneumonia, hepatosplenomegaly and exanthema, depending on the affected organs. *Toxoplasma gondii* can also be transmitted diaplacentally when a pregnant woman is infected for the first time. After an intraterine infection with the pathogen in the first trimester, placenta and embryo are severely affected, resulting in rejection of the embryo. An infection in the second or third trimester results in foetal symptoms which vary in intensity depending on the time point of infection, the dose of the infection and the immune status of mother and foetus. Among the most important symptoms are the following: hepatosplenomegaly, pneumonia, myocarditis, purpura, hydrocephalus and intracranial anomalies (in particular intracerebral calcification), chorioretinitis and optic nerve oedema with concurrent distant active lesions. Connataly infected children mostly show severe damage, as they are treated too late.

Diagnostic application

Since direct detection of *Toxoplasma* is seldom successful, serological methods play an important role in the diagnosis of a *Toxoplasma gondii* infection. Antibodies of class IgM and IgG are detectable around 8 days after infection. The IgM antibodies disappear after a few months, whereas IgG antibodies persist lifelong. In most cases the determination of IgG and IgM antibodies can establish the presence of a fresh infection which could pose a risk to a pregnancy. For confirmation, specific IgA antibodies are investigated and the avidity of specific IgG antibodies is determined. A positive IgG detection prior to pregnancy is considered proof of immunity.

The test is not intended to be used for the determination of suitability of sample material for transfusion, transplantation or cell administration in accordance with EU regulation 2017/746.
Levels of anti-Toxoplasma gondii antibodies were analysed in a group of 500 healthy blood donors using the Anti-Toxoplasma gondii ELISA (IgG) from EUROIMMUN. With a cut-off value of 10 IU/ml, 39% of the blood donors were anti-Toxoplasma gondii positive. This corresponds to the known infection level in Germany. In a further panel of 200 healthy pregnant women, antibodies of class IgG against Toxoplasma gondii were detected in 33% of samples.

The reproducibility of the test was investigated by determining the intra- and inter-assay coefficients of variation using four sera. The intra-assay CVs are based on 20 determinations and the inter-assay CVs on four determinations performed in six different test runs.

Antibodies against Toxoplasma gondii were determined in a cohort of 63 serologically precharacterised patient samples and 42 sera from healthy blood donors (origin: Turkey) using the Anti-Toxoplasma gondii ELISA (IgG) from EUROIMMUN and the bioMérieux VIDAS Toxoplasma (IgG). The agreement between the qualitative results for the two ELISAs was 99%.

395 clinically precharacterised patient samples from quality assessment service providers (INSTAND, Germany; LABQUALITY, Finland; MQ, Switzerland; NEQAS, UK and RfB, Germany) were analysed using the Anti-Toxoplasma gondii ELISA (IgG) from EUROIMMUN. The qualitative results of the ELISA showed an agreement of 99.7% with the specifications from the quality assessment institutes (excluding borderline sera).